If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6c^2+30c=0
a = 6; b = 30; c = 0;
Δ = b2-4ac
Δ = 302-4·6·0
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-30}{2*6}=\frac{-60}{12} =-5 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+30}{2*6}=\frac{0}{12} =0 $
| 2/4x=4/3 | | 24=9m | | 4=3y-5y | | (5x)+(9+x)=120 | | 1,1(6)x-21/2(x+2)=5x-9 | | 51x+34*2=28 | | 51x+34*7=23 | | 51x+34*6=23 | | -1.2x+4.2=27 | | 51x+34*5=23 | | 51x+34*4=23 | | 25=45a | | x-2=2x4 | | 51x+34*3=23 | | p+8-8=-7 | | .63x+33x=69 | | 51x+34*2=23 | | 8(x-4)=108 | | 8n^2+5=797 | | 95÷5=x | | 51x+34=23 | | 23=y/3-15 | | 5+r=21 | | 49=16-11x | | 10+4m=30 | | x+2-5=-5 | | 5+r=31 | | 5÷95=x | | -23y-7=-30y-49 | | 3/5y+2=3/4y+7 | | Y=3/2x^2-x | | 5=5r-1-3r |